50 câu Trắc nghiệm Ôn tập Chương 6 (có đáp án 2024) – Toán 10 Kết nối tri thức
Bộ 50 câu hỏi trắc nghiệm Toán 10 (có đáp án) Ôn tập Chương 6 : Hàm số, đồ thị và ứng dụng đầy đủ các mức độ sách Kết nối tri thức giúp học sinh ôn luyện trắc nghiệm Toán 10 Chương 6.
Trắc nghiệm Toán 10 Ôn tập Chương 6
Câu 1. Tập xác định của hàm số là
A. ∅;
B. ℝ;
C. ℝ\{1};
D. ℝ\{0; 1}.
Đáp án đúng là: B
Ta có:
Vậy hàm số có tập xác định D = ℝ.
Câu 2. Cho hàm số có đồ thị như hình vẽ
Kết luận nào sau đây là đúng
A. Hàm số nghịch biến trên khoảng (– ∞; – 1);
B. Hàm số đồng biến trên khoảng (1; + ∞);
C. Hàm số đồng biến trên khoảng (– ∞; 1);
D. Hàm số nghịch biến trên khoảng (– 1; + ∞).
Đáp án đúng là: C
Quan sát đồ thị hàm số, ta thấy:
Đồ thị ta có hàm số đi lên trên khoảng (– ∞; 1) và đi xuống trên khoảng (1; + ∞) nên hàm số đồng biến trên khoảng (– ∞; 1) và nghịch biến trên khoảng (1; + ∞).
Vậy đáp án đúng là C.
Câu 3. Tam thức f(x) = x2 – 2x – 3 nhận giá trị dương khi và chỉ khi
A. x ∈ (– ∞; – 3) (– 1; + ∞) ;
B. x ∈ (– ∞; – 1) (3; + ∞) ;
C. x ∈ (– ∞; – 2) (6; + ∞) ;
D. x ∈ (1; 3).
Đáp án đúng là: B
Xét f(x) = x2 – 2x – 3 có ∆’ = (–1)2 – 1(–3) = 4 > 0 và a = 1 > 0 nên hàm số có hai nghiệm phân biệt x1 = –1 và x2 = 3.
Khi đó, ta có bảng xét dấu:
Suy ra f(x) > 0 với x ∈ (– ∞; – 1) ∪ (3; + ∞); f(x) < 0 khi x ∈ (– 1; 3)
Vậy f(x) nhận giá trị dương khi x ∈ (– ∞; – 1) (3; + ∞) .
Câu 4. Cho parabol (P): y = ax2 + bx + 1. Xác định (P) biết rằng parabol đi qua hai điểm A(1; 4) và B(– 1; 2).
A. y = x2 + 2x + 1 ;
B. y = 5x2 – 2x + 1 ;
C. y = – x2 + 5x + 1 ;
D. y = 2x2 + x + 1 .
Đáp án đúng là: D
Vì parabol đi qua A(1; 4) ta có 4 = a + b + 1
Parabol qua B(– 1; 2) ta có 2 = a – b + 1
Khi đó ta có hệ phương trình:
Vậy parabol cần tìm là: y = 2x2 + x + 1.
Câu 5. Nghiệm của phương trình
A. 5;
B. – 3;
C. 6;
D. 4.
Đáp án đúng là: C
Điều kiện của phương trình 2x – 3 ≥ 0
Ta có
Câu 6. Cho parabol (P): y = ax2 + bx + c có đồ thị như hình bên. Phương trình của parabol này là :
A. y = 2x2 – 4x – 1;
B. y = x2 – 2x – 1;
C. y = 2x2 – 8x – 1;
D. y = 2x2 – x – 1.
Đáp án đúng là: A
Dựa vào đồ thị ta có trục đối xứng x = 1
Đáp án A, B đều có trục đối xứng x = 1 nên A, B đều thỏa mãn
Đáp án C có trục đối xứng x = 2 nên loại đáp án C.
Đáp án D có trục đối xứng nên loại đáp án D.
Dựa vào đồ thị ta có tọa độ đỉnh I(1; – 3)
Đáp án A có tọa độ đỉnh I(1; – 3) đáp án A thỏa mãn.
Đáp án B có tọa độ đỉnh I(1; – 2) nên loại đáp án B.
Câu 7. Số nghiệm của phương trình
A. 4;
B. 2;
C. 0;
D. 1.
Đáp án đúng là: D
Điều kiện của phương trình ⇔
Xét phương trình:
Ta thấy x = 1 (không thỏa mãn điều kiện), x = 4 (thỏa mãn điều kiện).
Vậy phương trình có 1 nghiệm x = 4.
Câu 8. Tọa độ đỉnh I của parabol (P): y = x2 + 8x + 12 là
A. I(– 4; – 4);
B. I(– 1; – 1);
C. I(– 4; 4);
D. I(4; 4).
Đáp án đúng là : A
Tọa độ đỉnh
Ta có ;
Vậy tọa độ đỉnh I(– 4; – 4)
Câu 9. Đồ thị hàm số y = – 9x2 + 6x – 1 có dạng là:
A.
B.
C.
D.
Đáp án đúng là: B
Giao điểm của đồ thị hàm số với trục tung là điểm A(0; – 1) vậy giao điểm có tung độ âm nên loại đáp án A.
Trục đối xứng của đồ thị hàm số vậy trục đối xứng nằm về phần dương của trục Ox nên loại đáp án C và D.
Vậy đáp án đúng là B.
Câu 10. Cho f(x) = x2 – 1. Tìm khẳng định sai trong các khẳng định sau đây
A. f(x) < 0 khi x ∈ (– 1; 1);
B. f(x) > 0 khi x ∈ (– ∞; –1) (1; + ∞)
C. f(x) = 0 khi x = 1; x = – 1;
D. f(x) > 0 khi x ∈ (– 1; 1);
Đáp án đúng là: D
Xét f(x) = x2 – 1 có ∆ = – 4.(–1) = 4 > 0, a = 1 > 0 và có hai nghiệm phân biệt x1 = –1 và x2 = 1.
Khi đó ta có bảng xét dấu:
x |
–∞ –1 1 +∞ |
f(x) |
+ 0 – 0 + |
Từ bảng xét dấu ta có f(x) > 0 khi x ∈ (– ∞; –1) (1; + ∞) ; f(x) < 0 khi x ∈ (– 1; 1)
Vậy khẳng định sai là D
Câu 11. Tập xác định của hàm số y = là:
A. D = [2; + ∞);
B. D = [2; 6) ∪ (6; + ∞)
C. D = (6; + ∞);
D. D = ℝ\{6}.
Đáp án đúng là: B
Điều kiện xác định
Vậy tập xác định của hàm số là D = [2; 6) ∪ (6; + ∞).
Câu 12. Cho hàm số: y = x2 – 2x – 1, khẳng định nào sau đây sai?
A. Hàm số đồng biến trên (1; + ∞) ;
B. Đồ thị hàm số có trục đối xứng x = – 2;
C. Hàm số nghịch biến trên (– ∞; 1);
D. Đồ thị hàm số có đỉnh I(1; – 2).
Đáp án đúng là: B
Ta có a = 1 > 0; b = – 2; c = – 1.
Vì a = 1 > 0 nên
Hàm số đồng biến trên hay (1; + ∞). Đáp án A đúng
Hàm số nghịch biến trên hay (– ∞; 1). Đáp án C đúng
Tọa độ đỉnh xI = và yI =
Vậy toạ độ đỉnh I(1; - 2)
Đáp án D đúng
Đồ thị hàm số có trục đối xứng là Đáp án B sai
Câu 13. Cho f(x) = mx2 – 2x – 1. Xác định m để f(x) < 0 với mọi x ∈ ℝ.
A. m < – 1;
B. m < 0;
C. – 1 < m < 0.
D. m < 1 và m ≠ 0.
Đáp án đúng là: A
Trường hợp 1. m = 0. Khi đó f(x) = – 2x – 1 < 0
Vậy m = 0 không thỏa mãn f(x) < 0 với
Trường hợp 2. m ≠ 0.
Khi đó: f(x) = mx2 – 2x – 1 < 0 với
Vậy m < – 1 thỏa mãn bài toán.
Câu 14. Tổng các nghiệm của phương trình là:
A. 1;
B. 0;
C. 2;
D.
Đáp án đúng là: C
Điều kiện của phương trình: x2 – 2x – 3 ≥ 0
Đặt ta có phương trình t2 + 3t – 4 =0
Kết hợp với điều kiện của t ta thấy t = 1 thỏa mãn
Với t = 1
Kết hợp với điều kiện của x thì đều thỏa mãn
Vậy tổng các nghiệm của phương trình S = 2.
Câu 15. Cho bất phương trình 2x2 – 4x + m + 5 > 0. Tìm m để bất phương trình đúng ?
A. m ≥ – 11;
B. m > – 11;
C. m < – 11;
D. m < 11.
Đáp án đúng là: B
Ta có: a = 2 > 0. Do đó, 2x2 – 4x + m + 5 > 0, sẽ có trường hợp sau:
Trường hợp 1. ∆ < 0 ( – 4)2 – 4.2.(m + 5) < 0 m > – 3, khi đó
2x2 – 4x + m + 5 > 0 với
Do đó 2x2 – 4x + m + 5 > 0 với
Trường hợp 2. ∆ ≥ 0, khi đó phương trình 2x2 – 4x + m + 5 = 0 sẽ có hai nghiệm x1; x2.
Do đó, để 2x2 – 4x + m + 5 > 0,
– 11 < m ≤ – 3
Kết hợp hai trường hợp lại ta được m > – 11 thì thì 2x2 – 4x + m + 5 > 0 với
Câu 16. Tập ngiệm của bất phương trình: x(x + 5) ≤ 2(x2 + 2) là:
A.
B.
C.
D.
Đáp án đúng: A
Ta có: x(x + 5) ≤ 2(x2 + 2) x2 – 5x + 4 ≥ 0
Đặt f(x) = x2 – 5x + 4 ta có f(x) = 0
Ta có bảng xét dấu :
Dựa vào bảng xét dấu nghiệm của bất phương trình
Câu 17. Bất phương trình: có bao nhiêu nghiệm nguyên dương?
A. 0
B. 1
C. 2
D. 3
Ta có điều kiện: x2 – 5 ≥ 0
Vậy x2 – 3x – 4 < 0 .
Xét x2 – 3x – 4 = 0
Ta có bảng xét dấu
Dựa vào bảng xét dấu ta có x2 – 3x – 4 < 0 – 1 < x < 4
Kết hợp với điều kiện ta được: . Suy ra nghiệm nguyên dương của bất phương trình đã cho là: x = 3.
Câu 18. Nghiệm của phương trình là
A. x = 2;
B. x = 4;
C. x = 5;
D. x = 6.
Đáp án đúng là: D
Điều kiện của phương trình:
Câu 19. Hàm số y = – x2 + 2x + 1 đồng biến trên khoảng
A. (– ∞; + ∞);
B. (– ∞; 1);
C. (1; + ∞);
D. (– ∞; 2).
Đáp án đúng là: B
Tọa độ đỉnh của hàm số là I(1; 2)
Bảng biến thiên
Từ bảng biến thiên ta có hàm số tăng từ trái sang phải trên khoảng (– ∞; 1) nên hàm số đồng biến trên khoảng (– ∞; 1).
Câu 20. Cho hàm số y = f(x) có đồ thị như hình sau:
Hàm số đồng biến trên khoảng
A.
B.
C.
D.
Đáp án đúng là: C
Đồ thị hàm số đi lên từ trái qua phải trên khoảng nên hàm số đồng biến trên khoảng
Câu 21. Tìm tất cả các giá trị của a để bất phương trình ax2 – x + a ≥ 0,
A. a = 0;
B. a < 0;
C.
D.
Đáp án đúng là: D
ax2 – x + a ≥ 0,
Xét tam thức bậc hai f(a) = 1 – a2, có ∆ = 02 – 4.(-4).1 = 16 > 0. Do đó f(a) có hai nghiệm phân biệt và
Ta có bảng xét dấu
Dựa vào bảng xét dấu ta có 1 – 4a2 ≤ 0
Kết hợp với điều kiện a > 0 suy ra a ∈
Vậy để ax2 – x + a ≥ 0, thì a ∈ hay a ≥
Câu 22. Để f(x) = x2 + (m + 1)x +2m + 7 > 0 với mọi x thì
A. – 3 ≤ m ≤ 9;
B.
C. – 3 < m < 9;
D.
Đáp án đúng là: C
Ta có f(x) > 0 với
Xét tam thức bậc hai f(m) = m2 – 6m – 27, có ∆’ = 9 – (-27) = 36 > 0. Do đó f(m) có hai nghiệm phân biệt là m = -3 và m = 9.
Ta có bảng xét dấu
Dựa vào bảng xét dấu để ∆ < 0 thì – 3 < m < 9.
Vậy đáp án đúng là C.
Câu 23. Cho hàm số y = ax2 + bx + c có đồ thị như hình sau:
Kết luận nào sau đây đúng về hệ số a, b:
A. a > 0; b > 0;
B. a < 0; b > 0;
C. a > 0; b < 0;
D. a > 0; c <0.
Đáp án đúng là: C
Vì bề lõm của đồ thị hướng lên trên nên a > 0;
Trục đối xứng của hàm số (đường màu đỏ) nằm bên phải trục Oy nên ta có trục đối xứng nhận giá trị dương hay mà a > 0 nên b < 0.
Vậy a > 0 và b < 0.
Câu 24. Đồ thị hàm số y = 4x2 – 3x – 1 có dạng nào trong các dạng sau đây?
A.
B.
C.
D.
Đáp án đúng là: D
Giao điểm của đồ thị với trục tung tại A(0; – 1) nên đồ hàm số cắt trục tung tại điểm có tung độ âm. Do đó chỉ có hình C và hình D thỏa mãn.
Hàm số có trục đối xứng nên trục đối xứng nằm về phần dương của trục Ox.
Do đó hình D là hình vẽ đúng.
Câu 25. Tập xác định của hàm số là
A. [2; +∞)
B. [1; +∞)
C.
D.
Đáp án đúng là: A
Hàm số xác định khi
Vậy tập xác định của hàm số là: D = [2; + ∞).
Câu 26. Phương trình x2 – (m – 1)x + m2 – 3m + 2 = 0 có hai nghiệm trái dấu nhau khi và chỉ khi
A. m < 3;
B. m < 1;
C. m = 1;
D. 1 < m < 2.
Đáp án đúng là: D
x2 – (m – 1)x + m2 – 3m + 2 = 0 có 2 nghiệm trái dấu khi a.c < 0
⇔ 1. (m2 – 3m + 2) < 0
⇔ m2 – 3m + 2 < 0
⇔ 1 < m < 2
Vậy phương trình có 2 nghiệm trái dấu khi 1 < m < 2.
Đáp án đúng là D.
Câu 27. Hàm số y = x2 + 2x – 1 có bảng biến thiên là
A.
B.
C.
D.
Đáp án đúng là: A
Tọa độ đỉnh của hàm số là I(– 1; – 2)
Vì hệ số a > 0 nên hàm số đồng biến trên khoảng (– 1; + ∞) và nghịch biến trên khoảng (– ∞; – 1) ta có bảng biến thiên
Câu 28. Tìm tất cả các giá trị thực của tham số m để bất phương trình
f(x) = (m – 3)x2 + (m + 2)x – 4 > 0 vô nghiệm
A.
B. – 22 ≤ m ≤ 2;
C. – 22 < m < 2;
D.
Đáp án đúng là: B
Ta có f(x) > 0 vô nghiệm
Xét m = 3 ta có f(x) = 5x – 4 với x > thì f(x) > 0 nên m = 3 không thỏa mãn.
Xét m ≠ 3 ta có
Xét tam thức bậc hai (biến m): m2 + 20m – 44 có ∆’ = 102 – (-44) = 144 > 0. Do đó tam thức có hai nghiệm phân biệt x = -22 và x = 2.
Ta có bảng xét dấu
Để
Vậy đáp án đúng là B.
Câu 29. Số giá trị nguyên của x thỏa mãn điều kiện xác định của phương trình : là:
A. 0
B. 1
C. 2
D. 3
Đáp án đúng là: B
Điều kiện của phương trình :
Vì x ∈ ℤ nên x ∈ {0; 1; 2}.
Vậy có 3 giá trị nguyên của x thỏa mãn điều kiện xác định của phương trình đã cho.
Câu 30. Phương trình có bao nhiêu nghiệm nguyên âm:
A. 0
B. 1
C. 2
D. 3
Đáp án đúng là: B
Điều kiện của phương trình: x2 + 5x + 2 ≥ 0
Đặt
Kết hợp với điều kiện t = 4 thỏa mãn
Với t = 4 ta có
Vậy phương trình đã cho có 1 nghiệm nguyên âm.