Lý thuyết Giá trị lượng giác của góc lượng giác (Kết nối tri thức 2024) Toán 11

Tóm tắt lý thuyết Toán 11 Bài 1: Giá trị lượng giác của góc lượng giác ngắn gọn, chính xác sách Kết nối tri thức sẽ giúp học sinh nắm vững kiến thức trọng tâm, ôn luyện để học tốt Toán 11.

1 492 lượt xem


Lý thuyết Toán 11 Bài 1: Giá trị lượng giác của góc lượng giác - Kết nối tri thức

Bài giảng Toán 11 Bài 1: Giá trị lượng giác của góc lượng giác

A. Lý thuyết Giá trị lượng giác của góc lượng giác

1. Góc lượng giác

a, Khái niệm góc lượng giác và số đo của góc lượng giác

Trong mặt phẳng, cho 2 tia Ou, Ov. Xét tia Om cùng nằm tròn mặt phẳng này. Nếu tia Om quay quanh điểm O, theo một chiều nhất định từ Ou đến Ov, thì ta nói nó quét một góc lượng giác với tia đầu Ou và tia cuối Ov.

Kí hiệu: (Ou, Ov).

Số đo của góc lượng giác có tia đầu Ou và tia cuối Ov kí hiệu là sđ(Ou, Ov).

Lý thuyết Giá trị lượng giác của góc lượng giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11 (ảnh 1)

b, Hệ thức Chasles

Với 3 tia Ou, Ov, Ow bất kì ta có:

Sđ(Ou,Ov) + sđ(Ov, Ow) = sđ(Ou,Ow) +k360o.

2. Đơn vị đo góc và độ dài cung tròn

a, Đơn vị đo góc và cung tròn

Đơn vị độ: 1o=60,1=60

Đơn vị rađian: 1o=π180rad, 1 rad =(180π)o

(180)b, Độ dài cung tròn

Một cung tròn của đường tròn bán kính R và có số đo αrad thì có độ dài l=Rα=

3. Giá trị lượng giác của góc lượng giác

a, Đường tròn lượng giác

Đường tròn lượng giác là đường tròn có tâm tại gốc tọa độ, bán kính bằng 1, được định hướng và lấy điểm A(1;0) làm điểm gốc của đường tròn.

Điểm trên đường tròn lượng giác biểu diễn góc lượng giác có số đo α(độ hoặc rad) là điểm M trên đường tròn lượng giác sao cho sđ (OA, OM) =α.

Lý thuyết Giá trị lượng giác của góc lượng giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11 (ảnh 2)

b, Các giá trị lượng giác của góc lượng giác:

Lý thuyết Giá trị lượng giác của góc lượng giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11 (ảnh 3)

Trục tung là trục sin, trục hoành là trục côsin

Điểm M(x;y) nằm trên đường tròn như hình vẽ. Khi đó:

x=cosαy=sinα.

tanα=sinαcosα=yx(x0)

cotα=cosαsinα=xy(y0).

c, Bảng xác định dấu của các giá trị lượng giác

Lý thuyết Giá trị lượng giác của góc lượng giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11 (ảnh 4)

d, Giá trị lượng giác của các góc đặc biệt

Lý thuyết Giá trị lượng giác của góc lượng giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11 (ảnh 5)

e, Cách bấm máy tính để tìm giá trị lượng giác của góc

Lý thuyết Giá trị lượng giác của góc lượng giác (Kết nối tri thức 2023) hay, chi tiết | Toán lớp 11 (ảnh 6)

4. Quan hệ giữa các giá trị lượng giác

a, Các công thức lượng giác cơ bản

sin2α+cos2α=11+tan2α=1cos2α(απ2+kπ,kZ)1+cot2α=1sin2α(αkπ,kZ)tanα.cotα=1(αkπ2,kZ)sin2+cos2=11+tan2=1cos2(2+,)1+cot2=1sin2(,)tan.cot=1(2,)

b, Giá trị lượng giác của các góc có liên quan đặc biệt (cos đối, sin bù, phụ chéo, khác pi tan)

b, Giá trị lượng giác của các góc có liên quan đặc biệt (cos đối, sin bù, phụ chéo, khác pi tan)

  • Góc đối nhau (α và - α)

sin(α)=sinαcos(α)=cosαtan(α)=tanαcot(α)=cotα

  • Góc bù nhau (α và π α)

sin(πα)=sinαcos(πα)=cosαtan(πα)=tanαcot(πα)=cotα

  • Góc phụ nhau (α và π2 α)

sin(π2α)=cosαcos(π2α)=sinαtan(π2α)=cotαcot(π2α)=tanα

  • Góc hơn kém π (α và π α)

sin(π+α)=sinαcos(π+α)=cosαtan(π+α)=tanαcot(π+α)=cotα

(+)=sincos(+)=costan(+)=tancot(+)=cot
B. Bài tập Giá trị lượng giác của góc lượng giác

Bài 1. Tính

a) Lý thuyết Toán 11 Kết nối tri thức Bài 1: Giá trị lượng giác của góc lượng giác ;

b) tan(–780°).

Hướng dẫn giải

a) Lý thuyết Toán 11 Kết nối tri thức Bài 1: Giá trị lượng giác của góc lượng giác.

b) tan(– 780°) = tan(–60° – 2.360°) = tan(–60°) = – tan60° = 3.

Bài 2. Dùng máy tính cầm tay để:

a) Đổi 56°32’ sang rađian.

b) Tính Lý thuyết Toán 11 Kết nối tri thức Bài 1: Giá trị lượng giác của góc lượng giác.

Hướng dẫn giải

a) Để đổi 56°32’ sang rađian ta bấm lần lượt như sau:

Lý thuyết Toán 11 Kết nối tri thức Bài 1: Giá trị lượng giác của góc lượng giác

Màn hình hiển thị kết quả: 0,9866928038

Vậy 56°32’ bằng 0,9866928038 rađian.

b) Để tính Lý thuyết Toán 11 Kết nối tri thức Bài 1: Giá trị lượng giác của góc lượng giác ta bấm lần lượt như sau:

Lý thuyết Toán 11 Kết nối tri thức Bài 1: Giá trị lượng giác của góc lượng giác

Màn hình hiển thị kết quả: 1,253960338

Vậy Lý thuyết Toán 11 Kết nối tri thức Bài 1: Giá trị lượng giác của góc lượng giác bằng 1,253960338.

Bài 3. Trên một đường tròn có bán kính bằng 5 cm, tìm độ dài của cung có số đo 23 .

Hướng dẫn giải

Ta có R = 5 cm; =23. Suy ra l = Rα = 5.23 ≈ 10,5 (cm).

Vậy độ dài cung tròn là 10,5 cm.

Bài 4. 

Trên một đường tròn có bán kính bằng 5 cm, tìm độ dài của cung có số đo 2π3 .

Hướng dẫn giải

Ta có R = 5 cm; α=2π3. Suy ra l = Rα = 5.2π3 ≈ 10,5 (cm).

Vậy độ dài cung tròn là 10,5 cm.

1 492 lượt xem