Lý thuyết Hàm số lượng giác (Kết nối tri thức 2024) Toán 11

Tóm tắt lý thuyết Toán 11 Bài 13: Hàm số lượng giác ngắn gọn, chính xác sách Kết nối tri thức sẽ giúp học sinh nắm vững kiến thức trọng tâm, ôn luyện để học tốt Toán 11.

1 184 lượt xem


Lý thuyết Toán 11 Bài 3: Hàm số lượng giác

Bài giảng Toán 11 Bài 3: Hàm số lượng giác

A. Lý thuyết Hàm số lượng giác

1. Định nghĩa hàm số lượng giác

- Quy tắc đặt tương ứng mỗi số thực x với số thực sinx được gọi là hàm số sin, kí hiệu y = sinx. Tập xác định của hàm số sin là R.

- Quy tắc đặt tương ứng mỗi số thực x với số thực cosx được gọi là hàm số cos, kí hiệu y = cosx. Tập xác định của hàm số côsin là R.

- Hàm số cho bằng công thức y=sinαcosαđược gọi là hàm số tang, kí hiệu là y = tanx. Tập xác định của hàm số tang là R{π2+kπ|kZ}.

- Hàm số cho bằng công thức y=cosαsinαđược gọi là hàm số tang, kí hiệu là y = tanx. Tập xác định của hàm số tang là R{kπ|kZ}.

2. Hàm số chẵn, hàm số lẻ, hàm số tuần hoàn

a, Hàm số chẵn, hàm số lẻ

Cho hàm số y = f(x) có tập xác định là D.

+) Hàm số f(x) được gọi là hàm số chẵn nếu xDthì xDvà f(x)=f(x). Đồ thị của một hàm số chẵn nhận trục tung (Oy) làm trục đối xứng.

+) Hàm số f(x) được gọi là hàm số lẻ nếu xDthì xDvà f(x)=f(x). Đồ thị của một hàm số lẻ nhận gốc tọa độ làm tâm đối xứng.

b, Hàm số tuần hoàn

Hàm số y = f(x) có tập xác định D được gọi là hàm số tuần hoàn nếu tồn tại số T 0 sao cho với mọi xDta có:

+) x+TDvà xTD

+) f(x+T)=f(x)

(+)=()Số T dương nhỏ nhất thỏa mãn cách điều kiện trên (nêu có) được gọi là chu kì của hàm số tuần hoàn đó.

* Nhận xét:

Các hàm số y = sinx, y=cosx tuần hoàn chu kì 2π.

Các hàm số y = tanx, y=cotx tuần hoàn chu kì π.

3. Đồ thị và tính chất của hàm số y = sinx

- Tập xác định là R.

- Tập giá trị là [-1;1].

- Là hàm số lẻ và tuần hoàn chu kì 2π.

- Đồng biến trên mỗi khoảng (π2+k2π;π2+k2π) và nghịch biến trên mỗi khoảng (π2+k2π;3π2+k2π).

- Có đồ thị đối xứng qua gốc tọa độ và gọi là một đường hình sin.

4. Đồ thị và tính chất của hàm số y = cosx

Tập xác định là R.

Tập giá trị là [-1;1].

Là hàm số chẵn và tuần hoàn chu kì 2π.

Đồng biến trên mỗi khoảng (π+k2π;k2π) và nghịch biến trên mỗi khoảng (k2π;π+k2π).

Có đồ thị là một đường hình sin đối xứng qua trục tung.

5. Đồ thị và tính chất của hàm số y = tanx

Tập xác định là R{π2+kπ|kZ}.

Tập giá trị là R.

Là hàm số lẻ và tuần hoàn chu kì π.

Đồng biến trên mỗi khoảng (π2+kπ;π2+kπ)kZ.

Có đồ thị đối xứng qua gốc tọa độ.

6. Đồ thị và tính chất của hàm số y = cotx

Tập xác định là R{kπ|kZ}.

Tập giá trị là R.

Là hàm số lẻ và tuần hoàn chu kì π.

Đồng biến trên mỗi khoảng (kπ;π+kπ)kZ.

Có đồ thị đối xứng qua gốc tọa độ.

B. Bài tập Hàm số lượng giác

Bài 1. Tìm tập xác định của các hàm số sau:

a) y=1+sinxcosx;

b) y=1+cosx1cosx.

Hướng dẫn giải

a) Biểu thức 1+sinxcosx có nghĩa khi cos x ≠ 0, tức là x ≠ π2+kπ(k ∈ ℤ).

Vậy tập xác định của hàm số y=1+sinxcosx là D = R\Lý thuyết Toán 11 Kết nối tri thức Bài 3: Hàm số lượng giác.

b) Biểu thức 1+cosx1cosx có nghĩa khi Lý thuyết Toán 11 Kết nối tri thức Bài 3: Hàm số lượng giác (1)

Mặt khác, vì –1 ≤ cosx ≤ 1 ∀x ∈ ℝ nên 1 + cosx ≥ 0 và 1 – cosx ≥ 0

⇒ 1+cosx1cosx0 khi 1 – cosx ≠ 0

Do đó (1) ⇔ 1 – cosx ≠ 0 ⇔ cosx ≠ 1 ⇔ x ≠ k2ℼ (k ∈ ℤ).

Vậy tập xác định của hàm số y=1+cosx1cosx là D = ℝ \ {k2ℼ | k ∈ ℤ}.

Bài 2. Xét tính chẵn, lẻ của các hàm số sau:

a) f(x) = sinx cosx;

b) g(x) = sin2x + cos2x.

Hướng dẫn giải

a) Tập xác định của hàm số f(x) là D = ℝ.

Do đó, nếu x ∈ D thì –x ∈ D.

Ta có f(–x) = sin(–x) cos(–x) = –sinx . cosx = – f(x).

Vậy hàm số f(x) = sinx cosx là hàm số lẻ.

b) Tập xác định của hàm số g(x) là D = ℝ.

Do đó, nếu x ∈ D thì –x ∈ D.

Ta có g(–x) = sin2(–x) + cos2(–x) = [–sinx]2 + cos(–2x) = sin2x + cos2x = f(x).

Vậy hàm số g(x) = sin2x + cos2x là hàm số chẵn.

Bài 3. Tìm tập giá trị của hàm số sau:

a) y = 1+ sin;

b) y = 3cosLý thuyết Toán 11 Kết nối tri thức Bài 3: Hàm số lượng giác - 1.

Hướng dẫn giải

a) Điều kiện xác định của hàm số là sin x ≥ 0;

Vì –1 ≤ sin x ≤ 1 nên kết hợp với điều kiện xác định, ta có 0 ≤ sin x ≤ 1

Suy ra 0inx1 ⇒ 1+0 1 + sin  1 + 1 ⇒ 11+sin2

⇒ 1 ≤ y ≤ 2

Vậy tập giá trị của hàm số y=1+sin là [1; 2].

b) Ta có 1cosLý thuyết Toán 11 Kết nối tri thức Bài 3: Hàm số lượng giác1, xR ⇔ -33cos Lý thuyết Toán 11 Kết nối tri thức Bài 3: Hàm số lượng giác3, xR

⇔ -43cosLý thuyết Toán 11 Kết nối tri thức Bài 3: Hàm số lượng giác - 12, xR

⇔ –4 ≤ y ≤ 2, ∀x ∈ ℝ.

Vậy tập giá trị của hàm số y = 3cosLý thuyết Toán 11 Kết nối tri thức Bài 3: Hàm số lượng giác - 1 là [–4; 2].

1 184 lượt xem