Lý thuyết Hàm số liên tục (Kết nối tri thức 2024) Toán 11

Tóm tắt lý thuyết Toán 11 Bài 17: Hàm số liên tục ngắn gọn, chính xác sách Kết nối tri thức sẽ giúp học sinh nắm vững kiến thức trọng tâm, ôn luyện để học tốt Toán 11.

1 106 lượt xem


Lý thuyết Toán 11 Bài 17: Hàm số liên tục - Kết nối tri thức

Bài giảng Toán 11 Bài 17: Hàm số liên tục

A. Lý thuyết Hàm số liên tục

1. Hàm số liên tục tại 1 điểm

Cho hàm y=f(x) xác định trên khoảng (a;b)chứa điểm x0. Hàm số f(x) được gọi là liên tục tại điểm x0 nếu limxx0f(x)=f(x0).

Hàm số không liên tục tại x0 được gọi là gián đoạn tại điểm đó.

2. Hàm số liên tục trên một khoảng

- Hàm số y=f(x) được gọi là liên tục trên khoảng (a;b) nếu nó liên tục tại mọi điểm thuộc khoảng này.

- Hàm số y=f(x) được gọi là liên tục trên đoạn [a;b]nếu nó liên tục trên khoảng (a;b) và limxa+f(x)=f(a),limxbf(x)=f(b).

*Nhận xét:

- Hàm số đa thức và hàm số y=sinx,y=cosx liên tục trên R.

- Các hàm số y=tanx,y=cotx,y=x và hàm phân thức hữu tỉ (thương của hai đa thức) liên tục trên tập xác định của chúng.

3. Một số tính chất cơ bản

Giả sử hai hàm số y=f(x) và y=g(x) liên tục tại điểm x0. Khi đó:

a, Các hàm số y=f(x)±g(x) và y=f(x).g(x) liên tục tại điểm x0.

b, Hàm số y=f(x)g(x) liên tục tại điểm x0nếu g(x0)0.

Lý thuyết Hàm số liên tục – Toán 11 Kết nối tri thức (ảnh 1)

B. Bài tập Hàm số liên tục

Bài 1: 

Cho hàm số f(x) = Lý thuyết Toán 11 Kết nối tri thức Bài 17: Hàm số liên tục. Tìm giá trị của m để f(x) liên tục trên [0; +∞).

Hướng dẫn giải

+) Với x ∈ (0; 9): f(x) = 39xx liên tục trên (0; 9).

+) Với x ∈ [9; +∞) thì f(x) = 3x liên tục trên [9; +∞).

+) Tại x = 0 ta có f(0) = m

Lý thuyết Toán 11 Kết nối tri thức Bài 17: Hàm số liên tục

Vậy để hàm số liên tục trên [0; +∞) khi nó phải liên tục tại x = 0.

Suy ra: limx0+f(x) = mm = 16.

Vậy m = 16 thì f(x) liên tục trên [0; +∞).

Bài 2: Cho hàm số f(x) = Lý thuyết Toán 11 Kết nối tri thức Bài 17: Hàm số liên tục. Xét tính liên tục của hàm số tại x = 0.

Hướng dẫn giải

Ta có: f(0) = 0

lim0+f(x) = lim0+(x2+1) = 1

lim0f(x) = lim0x = 0

Vậy f(x) gián đoạn tại x = 0.

Bài 3: Cho f(x) và g(x) là các hàm số liên tục tại x = 1. Biết f(1) = 3 và lim1[2f(x)-g(x)] = 4. Tính g(1).

Hướng dẫn giải

Vì hàm số f(x) liên tục tại x = 1 nên hàm số 2f(x) cũng liên tục tại x = 1.

Mà hàm số g(x) liên tục tại x = 1. Do đó, hàm số y = 2f(x) – g(x) liên tục tại x = 1.

Suy ra: lim1[2f(x)-g(x)] = 2f(1) – g(1) = 4

Mà f(1) = 3 nên ta có: 2 . 3 – g(1) = 4, suy ra g(1) = 2.

Vậy g(1) = 2.

1 106 lượt xem