30 câu Trắc nghiệm Phép cộng, phép trừ phân thức đại số (có đáp án 2024) – Toán 8 Cánh diều
Bộ 30 câu hỏi trắc nghiệm Toán 8 (có đáp án) Bài 2: Phép cộng, phép trừ phân thức đại số đầy đủ các mức độ sách Cánh diều giúp học sinh ôn luyện trắc nghiệm Toán 8 Bài 2.
Trắc nghiệm Toán 8 Bài 2: Phép cộng, phép trừ phân thức đại số
Câu 1. Với B≠0, kết quả của phép cộng AB+CB là
A. A.CB
B. A + CB
C. A + C2B
D. A + CB2
Đáp án đúng là: B
Ta có AB+CB=A + CB.
Câu 2. Thực hiện phép tính sau: x2x+2−4x+2 (x≠−2)
A. x + 2
B. 2x
C. x
D. x – 2
Đáp án đúng là: D
x2x+2−4x+2=x2−4x+2=(x−2)(x+2)x+2
=(x−2)(x+2):(x+2)(x+2):(x+2)=x−21 = x - 2.
Câu 3. Tìm phân thức A thỏa mãn x+23x+5−A=x−12.
A. −3x2−92(3x+5)
B. 3x2−92(3x+5)
C. −3x2+92(3x+5)
D. 3x2+92(3x+5)
Đáp án đúng là: C
x+23x+5−A=x−12
Suy ra A = x+23x+5−x−12
= (x+2)22(3x+5)−(x−1)(3x+5)2(3x+5)
= 2x+42(3x+5)−3x2−3x+5x−52(3x+5)
= (2x+4)−(3x2−3x+5x−5)2(3x+5)
= (2x+4)−(3x2+2x−5)2(3x+5)
= 2x+4−3x2−2x+52(3x+5)
= −3x2+92(3x+5)
Câu 4. Phép tính 3x+21x2−9+2x+3−3x−3 có kết quả là
A. −2x−3
B. 2x(x−3)(x+3)
C. 2x+3
D. 2x−3
Đáp án đúng là: D
3x+21x2−9+2x+3−3x−3
= 3x+21(x−3)(x+3)+2x+3+−3x−3
= 3x+21(x−3)(x+3)+2(x−3)(x−3)(x+3)+−3(x+3)(x−3)(x+3)
= 3x+21+2(x−3)−3(x+3)(x−3)(x+3)
= 3x+21+2x−6−3x−9(x−3)(x+3)
= 2x+6(x−3)(x+3) = 2(x+3)(x−3)(x+3)
= 2x−3.
Câu 5. Cho A = 2x−16x2−6x−34x2−4. Phân thức thu gọn của A có tử thức là
A. 4x2−7x−212x(x−1)(x + 1)
B. 4x2 - 7x + 2
C. 4x2 - 7x - 2
D. 12x(x - 1))x + 1)
Đáp án đúng là: C
A = 2x−16x2−6x−34x2−4 = 2x−16x(x−1)−34(x2−1)
= 2x−16x(x−1)−34(x−1)(x+1) = 2(2x−1)(x+1)−3.3x12x(x−1)(x+1)
= 2(2x2−x+2x−1)−9x12x(x−1)(x+1) = 2(2x2+x−1)−9x12x(x−1)(x+1)
= 4x2+2x−2−9x12x(x−1)(x+1) = 4x2−7x−212x(x−1)(x+1)
Câu 6. Tìm phân thức A thỏa mãn: x−1x2−2x+ A = −x−1x2−2x
A. 2x−2
B. 22−x
C. 1x
D. 1x+2
Đáp án đúng là: B
x−1x2−2x+ A = −x−1x2−2x
Suy ra A = −x−1x2−2x−x−1x2−2x
= −x−1−(x−1)x2−2x = −x−1−x+1x2−2x
= −2xx2−2x=−2xx(x−2) = −2x−2=22−x.
Câu 7. Giá trị của biểu thức A = 52x+2x−32x−1+4x2+ 38x2−4x với x=14 là
A. A=112
B. A=132
C. A=152
D. A=172
Đáp án đúng là: D
A = 52x+2x−32x−1+4x2+ 38x2−4x
= 52x+2x−32x−1+4x24x(2x−1)
= (6x+7)(2x−1)4x(2x−1)=6x+74x
= 5.2(2x−1)4x(2x−1)+4x(2x−3)4x(2x−1)+4x2+34x(2x−1)
= 20x−104x(2x−1)+8x2−12x4x(2x−1)+4x2+34x(2x−1)
= 20x−10+8x2−12x+4x2+34x(2x−1)
= 12x2+8x−74x(2x−1)
=
Với ta có:
A = .
Câu 8. Tìm x, biết:
A. x = 0
B.
C. x = 1
D.
Đáp án đúng là: D
Ta có =
=
=
Mà nên
2x - 3 = 0
2x = 3
x =
Câu 9. Tính tổng sau: A = .
A. A = 1
B. A = 0
C. A =
D. A =
Đáp án đúng là: D
A =
=
=
= .
10. Cho 3y – x = 63. Tính giá trị của biểu thức A = .
A. 1
B. 2
C. 3
D. 4
Đáp án đúng là: D
Ta có 3y – x = 6 suy ra x = 3y – 63
Thay x = 3y – 6 vào A = , ta được:
A =
=
= .
Câu 11. Rút gọn biểu thức A = biết
A.
B.
C.
D.
Đáp án đúng là: A
A =
=
=
=
=
=
Câu 12. Rút gọn biểu thức A = + + ta được:
A. A = – 1
B. A = 0
C. A = 1
D. A = 2
Đáp án đúng là: A
A =
=
=
=
=
= = -1
Câu 13. Hãy tìm giá trị nhỏ nhất của biểu thức sau: A = .
A. 0
B. 1
C. 2
D. – 1
Đáp án đúng là: A
Điều kiện:
A =
=
=
=
=
= x2 + x + 1 - x + 1 = x2 + 2
Ta có nên hay
Dấu “=” xảy ra khi và chỉ khi x2 = 0 hay x = 0.
Vậy min A = 0 khi x = 0 .
Câu 14. Cho a, b, c thỏa mãn abc = 2023. Tính giá trị biểu thức sau:
A =
A. A = – 1
B. A = 0
C. A = 1
D. A = 2
Đáp án đúng là: C
Thay 2023 = abc vào biểu thức A ta được:
Câu 15. Cho và . Tính giá trị của biểu thức
A = .
A. 0
B. 1
C. 2
D. 3
Đáp án đúng là: B
Ta có x + y + z = x + y + z + 0
= x + y + z +
=
=
=
= (x + y + z)
Khi đó x + y + z = (x + y + z).
Do đó .