Lý thuyết Trường hợp bằng nhau thứ nhất của tam giác: cạnh – cạnh – cạnh (Cánh diều 2024) Toán 7
Tóm tắt lý thuyết Toán 7 Bài 4: Trường hợp bằng nhau thứ nhất của tam giác: cạnh – cạnh – cạnh ngắn gọn, chính xác sách Cánh diều sẽ giúp học sinh nắm vững kiến thức trọng tâm, ôn luyện để học tốt Toán 7.
Lý thuyết Toán lớp 7 Bài 4: Trường hợp bằng nhau thứ nhất của tam giác: cạnh – cạnh – cạnh
A. Lý thuyết
1. Trường hợp bằng nhau cạnh – cạnh – cạnh (c.c.c)
– Tính chất: Nếu ba cạnh của tam giác này bằng ba cạnh của tam giác kia thì hai tam giác đó bằng nhau.
Nếu AB = A’B’, AC = A’C’, BC = B’C’ thì DABC = DA’B’C’ (c.c.c).
Ví dụ: Cho hai tam giác HIK và DEG thỏa mãn HI = DE, IK = EG, HK = DG.
a) Chứng minh DHIK = DDEG.
b) Biết Tính số đo góc D và góc I.
Hướng dẫn giải
a) Xét DHIK và DDEG có:
HI = DE (giả thiết),
IK = EG (giả thiết),
HK = DG (giả thiết),
Suy ra DHIK = DDEG (c.c.c).
Vậy DHIK = DDEG.
b) Vì DHIK = DDEG (theo câu a)
Suy ra (các cặp góc tương ứng)
Mà nên
Xét DDEG có: (tổng ba góc trong một tam giác)
Do đó
Mà
Suy ra
Lại có (chứng minh trên).
Nên
Vậy
Ví dụ: Cho trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA = OB. Vẽ các cung tròn tâm A và B có cùng bán kính sao cho chúng cắt nhau ở điểm I nằm trong góc xOy. Chứng minh OI là tia phân giác của góc xOy.
Hướng dẫn giải
Vì các cung tròn tâm A và tâm B có cùng bán kính cắt nhau ở điểm I nằm trong góc xOy (giả thiết) nên ta có AI = BI
Xét tam giác OAI và tam giác OBI có:
OA = OB (giả thiết),
AI = BI (chứng minh trên),
OI là cạnh chung.
Suy ra DOAI = DOBI (c.c.c).
Do đó (hai góc tương ứng)
Nên tia OI là tia phân giác của góc xOy.
Vậy tia OI là tia phân giác của góc xOy.
– Nhận xét: Cách vẽ tia phân giác của một góc đã được chứng minh cụ thể như trên.
2. Áp dụng vào trường hợp bằng nhau về cạnh huyền và cạnh góc vuông của tam giác vuông
– Nếu cạnh huyền và một cạnh góc vuông của tam giác vuông này bằng cạnh huyền và một cạnh góc vuông của tam giác vuông kia thì hai tam giác vuông đó bằng nhau.
Hai tam giác ABC và A’B’C’ có BC = B’C’, AB = A’B’ thì DABC = DA’B’C’ (cạnh huyền – cạnh góc vuông).
Ví dụ: Cho hình vẽ sau:
a) Chứng minh
b) Biết Chứng minh MH là tia phân giác của
Hướng dẫn giải
a) Xét DEMN và DHNM có:
ME = HN (giả thiết),
MN là cạnh chung,
Suy ra DEMN = DHNM (cạnh huyền – cạnh góc vuông).
Do đó (hai góc tương ứng).
Vậy
b) Xét DEMN vuông tại E có: (tổng hai góc nhọn trong tam giác vuông bằng 90°).
Suy ra
Mà (chứng minh trên)
Do đó
Mặt khác và là hai góc kề nhau nên ta có:
Suy ra
Do đó
Suy ra MH là tia phân giác của
Vậy MH là tia phân giác của
3. Vẽ tam giác khi biết ba cạnh
Ví dụ: Để vẽ tam giác ABC có AB = 3 cm, AC = 5 cm, BC = 7 cm bằng thước thẳng (có chia đơn vị) và compa, ta làm như sau:
– Bước 1: Vẽ đoạn thẳng AC = 5 cm
– Bước 2: Vẽ một phần đường tròn tâm A bán kính 3 cm và một phần đương tròn tâm C bán kính 7 cm, B là điểm chung của hai phần đường tròn đó
– Bước 3: Vẽ các đoạn thẳng AB, BC. Ta được tam giác ABC.
B. Bài tập tự luyện
B.1 Bài tập trắc nghiệm
Câu 1. Cho tam giác IOH, vẽ cung tròn tâm I bán kính OH, vẽ cung tròn tâm O bán kính IH, hai cung tròn này cắt nhau tại K (K và H nằm khác phía so với đường thẳng IO). Khẳng định nào sau đây là đúng nhất?
A. HO // KI;
B. OK // IH;
C. Cả A và B đều sai;
D. Cả A và B đều đúng.
Hướng dẫn giải
Đáp án đúng là: D
Xét DIOH và DIOK có:
KO = IH (K nằm trên cung tròn tâm O bán kính IH),
OH = IK (K nằm trên cung tròn tâm I bán kính OH),
IO là cạnh chung
Do đó DIOH = DOIK (c.c.c)
Suy ra (các cặp góc tương ứng)
Mà và ở vị trí so le trong của IK và OH nên IK // OH (dấu hiệu nhận biết)
và ở vị trí so le trong của KO và IH nên KO // IH (dấu hiệu nhận biết)
Vậy ta chọn phương án D.
Câu 2. Cho hình vẽ sau:
Khẳng định nào sau đây là đúng ?
A. DABC = DADC;
B. DABC = DACD;
C. DACB = DADC;
D. DBCA = DDAC.
Hướng dẫn giải
Đáp án đúng là: A
Xét tam giác ABC và tam giác CDA có:
AB = AD, BC = DC, AC là cạnh chung
Suy ra DABC = DADC (c.c.c)
Vậy DABC = DADC hay ta có thể kí hiệu DACB = DACD hoặc DBCA = DDCA.
Do đó ta chọn phương án A.
Câu 3. Cho hình vẽ bên dưới:
Số đo góc C và góc M lần lượt là:
A. 45° và 65°;
B. 65° và 45°;
C. 55° và 70°;
D. 70° và 55°.
Hướng dẫn giải
Đáp án đúng là: A
Xét tam giác ABC và tam giác MNP có:
AB = MN, BC = NP, AC = MP (giả thiết)
Suy ra DABC = DMNP (c.c.c)
Do đó , , (các cặp góc tương ứng)
Mà , nên
Xét tam giác ABC có: (tổng ba góc trong một tam giác)
Suy ra
Hay
Vậy số đo góc C và góc M lần lượt là: 45° và 65°.
B.2 Bài tập tự luận
Bài 1. Cho đoạn thẳng AB. Vẽ cung tròn tâm A bán kính AB, vẽ cung tròn tâm B bán kính BA, chúng cắt nhau tại hai điểm M và N. Chứng minh DABM = DABN và DAMN = DBMN.
Hướng dẫn giải
Vì cung tròn tâm A bán kính AB cắt cung tròn tâm B bán kính BA tại hai điểm M và N nên AM = AN = BM = BN = AB.
+) Xét DMAB và DNAB có:
AB là cạnh chung,
MA = NA (chứng minh trên),
MB = NB (chứng minh trên),
Suy ra DMAB = DNAB (c.c.c).
+) Xét DAMN và DBMN có:
MN là cạnh chung,
MA = MB (chứng minh trên),
AN = NB (chứng minh trên),
Suy ra DAMN = DBMN (c.c.c)
Vậy DABM = DABN và DAMN = DBMN.
Bài 2. Cho tam giác ABC có AB = AC. Đường thẳng vuông góc với AB tại B và đường thẳng vuông góc với AC tại C cắt nhau tại điểm D.
a) Chứng minh DABD = DACD.
b) Gọi M là trung điểm của BC. Chứng minh A, M, D thẳng hàng.
Hướng dẫn giải
a) Vì AB ⊥ BD tại B nên
Vì AC ⊥ CD tại C nên
Xét DABD và DACD có:
AD là cạnh chung,
AB = AC (giả thiết),
Do đó DABD = DACD (cạnh huyền – cạnh góc vuông).
Vậy DABD = DACD.
b) Vì M là trung điểm của BC nên MB = MC.
Xét DABM và DACM có:
AB = AC (giả thiết),
AM là cạnh chung,
MB = MC (chứng minh trên).
Do đó DABM = DACM (c.c.c)
Suy ra (hai góc tương ứng)
Mà (hai góc kề bù)
Do đó
Chứng minh tương tự ta cũng có:
DDBM = DDCM (c.c.c)
Suy ra (hai góc tương ứng)
Mà (hai góc kề bù)
Do đó
Ta có: và
Suy ra
Do đó và là hai góc kề bù.
Nên ba điểm A, M, D cùng nằm trên một đường thẳng.
Vậy ba điểm A, M, D thẳng hàng.