Lý thuyết Ước và bội (Chân trời sáng tạo 2024) Toán 6

Tóm tắt lý thuyết Toán 6 Bài 9: Ước và bội ngắn gọn, chính xác sách Chân trời sáng tạo sẽ giúp học sinh nắm vững kiến thức trọng tâm, ôn luyện để học tốt Toán 6.

1 72 lượt xem


Lý thuyết Toán lớp 6 Bài 9: Ước và bội

Video giải Toán 6 Bài 9: Ước và bội - Chân trời sáng tạo

A. Lý thuyết Ước và bội

1. Ước và bội

Nếu có số tự nhiên a chia hết cho số tự nhiên b thì ta nói a là bội của b, còn b là ước của a.

Ví dụ: Ta có 12 ⋮ 6.

Khi đó, 12 là bội của 6, còn 6 là ước của 12.

Tập hợp các ước của a được kí hiệu là Ư(a). Tập hợp các bội của a được kí hiệu là B(a).

Ví dụ: Ư(8) = {1; 2; 4; 8}; B(5) = {0; 5; 10; 15; 20; …}.

Chú ý:

- Số 0 là bội của tất cả các số tự nhiên khác 0. Số 0 không là ước của bất kì số tự nhiên nào.

- Số 1 chỉ có một ước là 1. Số 1 là ước của mọi số tự nhiên.

- Mọi số tự nhiên a lớn hơn 1 luôn có ít nhất hai ước là 1 và chính nó.

2. Cách tìm ước

Cách tìm Ư(a):

Ta có thể tìm các ước của a (a > 1), ta có thể lần lượt chia a cho các số tự nhiên từ 1 đến a để xét xem a chia hết cho những số nào, khi đó các số ấy là ước của a.

Ví dụ:

Ta có 16 : 1 = 16; 16 : 2 = 8; 16 : 4 = 4; 16 : 8 = 2; 16 : 16 = 1.

Do đó các ước của 16 là: 1; 2; 4; 8; 16.

Vậy tập hợp các ước của 16 là: Ư(16) = {1; 2; 4; 8; 16}.

3. Cách tìm bội

Cách tìm B(a):

Muốn tìm bội của số tự nhiên a khác 0, ta có thể nhân a lần lượt với 0, 1, 2, 3, ...

Chú ý:

Bội của a có dạng tổng quát là a . k với k . Ta có thể viết:

()={  .  |}.

Ví dụ:

Ta có: 6 . 0 =0; 6 . 1 = 6; 6 . 2 = 12; 6 . 3 = 18; …

Do đó các bội của 6 là: 0; 6; 12; 18; …

Vậy B(6) = {0; 6; 12; 18; ...}

B. Bài tập tự luyện

Bài 1. Tìm số tự nhiên n để (5n + 14) ⋮ (n + 2).

Hướng dẫn giải

Ta có 5n + 14 = 5n + 10 + 4 = 5(n + 2) + 4.

Mà 5(n + 2) ⋮ (n + 2).

Do đó để (5n + 14) ⋮ (n + 2) thì 4 ⋮ (n + 2)

Khi đó (n + 2)  Ư(4) = {1; 2; 4}.

+ Với n + 2 = 1. Không có số tự nhiên n thỏa mãn n + 2 = 1.

+ Với n + 2 = 2 thì n = 0.

+ Với n + 2 = 4 thì n = 2.

Vậy với n  {0; 2} thì (5n + 14) ⋮ (n + 2).

Bài 2. Tìm các số tự nhiên a sao cho a  Ư(32) và a > 10.

Hướng dẫn giải

Ta có: Ư(32) = {1; 2; 4; 8; 16; 32}.

Mà a > 10 nên a {16; 32}.

Vậy các số tự nhiên a sao cho a  Ư(32) và a > 10 là a = 16; a = 32.

1 72 lượt xem