100 bài tập về phép đồng dạng (2024 có đáp án) và cách giải các dạng toán
Cách giải các dạng toán về phép đồng dạng và cách giải các dạng toán gồm phương pháp giải, ví dụ minh họa có lời giải và bài tập tự luyện sẽ giúp học sinh biết cách làm bài tập các dạng toán về phép đồng dạng. Mời các bạn đón xem:
Phép đồng dạng và cách giải các dạng bài tập
I. Lý thuyết ngắn gọn
1. Phép biến hình F gọi là phép đồng dạng tỉ số k (k > 0) nếu với hai điểm M, N bất kì và ảnh M’; N’ của chúng ta có:
2. Nhận xét:
- Phép dời hình là phép đồng dạng tỉ số k = 1
- Phép vị tự là phép đồng dạng tỉ số |k|
- Nếu thực hiện liên tiếp phép đồng dạng tỉ số k và phép đồng dạng tỉ số p ta được phép đồng dạng tỉ số pk
- Phép đồng dạng tỉ số k là hợp thành của một phép dời hình và một phép vị tự tỉ số k hoặc - k. Nó cũng là hợp thành của một phép vị tự tỉ số k hoặc - k và một phép dời hình
3. Phép đồng dạng tỉ số k có các tính chất sau:
- Biến ba điểm thẳng hàng thành ba điểm thẳng hàng và bảo toàn thứ tự giữ các điểm ấy
- Biến đường thẳng thành đường thẳng, biến tia thành tia, biến đoạn thẳng có độ dài bằng a thành đoạn thẳng có độ dài bằng ka
- Biến tam giác thành tam giác đồng dạng với tỉ số đồng dạng là k, biến góc thành góc bằng nó
- Biến đường tròn bán kính R thành đường tròn bán kính kR
4. Hai hình đồng dạng:
Hai hình được gọi là đồng dạng với nhau nếu có một phép đồng dạng biến hình này thành hình kia
II. Các dạng bài về phép đồng dạng
2.1 Dạng 1: Xác định ảnh của một hình qua một phép đồng dạng
Phương pháp giải: Dùng định nghĩa và tính chất của phép đồng dạng
Ví dụ 1: Trong mặt phẳng Oxy cho đường thẳng d có phương trình x + y – 2 = 0. Viết phương trình đường thẳng d’ là ảnh của d qua phép đồng dạng có được bằng cách thực hiện liên tiếp phép vị tự tâm I (-1; -1) tỉ số và phép quay tâm O góc -45 độ
Lời giải
Gọi là ảnh của d qua phép vị tự tâm I (-1; -1) tỉ số . Vì song song hoặc trùng với d nên phương trình của nó có dạng x + y + c = 0
Lấy
Vậy phương trình của
Ảnh của qua phép quay tâm O góc -45 độ là đường thẳng Oy.
Vậy phương trình
Ví dụ 2: Cho đường thẳng d: x – y + 1 = 0. Viết phương trình d’ là ảnh của đường thẳng d qua phép đồng dạng bằng cách thực hiện qua phép vị tự tâm I (1; 1), tỉ số k = 2 và phép tịnh tiến theo vectơ
Giải
Ta có
Qua phép vị tự tâm I, tỉ số k = 2 ta có:
Suy ra phương trìnhcó dạng x – y + c = 0
Mặt khác:
Vậy
Qua phép tịnh tiến theo vectơ ta có:
Suy ra phương trình có dạng: x – y + d = 0
Vậy có phương trình x – y + 3 = 0
Qua phép đồng dạng đường thẳng d: x – y + 1 = 0 trở thành đường thẳng
2.2 Dạng 2: Tìm phép đổng dạng biến hình H thành hình H’
Phương pháp giải: Tìm cách biểu thị phép đồng dạng đó như là kết quả của việc thực hiện liên tiếp các phép biến hình quen biết
Ví dụ 3: Cho hình chữ nhật ABCD. Gọi O là tâm đối xứng của nó. Gọi I, F, J, E lần lượt là trung điểm của các cạnh AB, BC, CD, DA. Tìm ảnh của tam giác AEO qua phép đồng dạng có được từ việc thực hiện liên tiếp phép đối xứng qua đường thẳng IJ và phép vị tự tâm B, tỉ số 2
Giải
- Lấy đối xứng qua đường thẳng IJ
IJ là đường trung trực của AB và EF
Suy ra:
qua phép vị tự tâm B tỉ số 2
Ta có:
Suy ra:
Vậy ảnh của tam giác AEO qua phép đồng dạng theo đề bài là tam giác BCD
Ví dụ 4: Cho hai hình chữ nhật có tỉ số giữa chiều rộng và chiều dài bằng . Chứng minh rằng luôn có một phép đồng dạng biến hình này thành hình kia
Giải
Giả sử ta có hai hình chữ nhật ABCD.A’B’C’D’ và
Phép tịnh tiến biến hình chữ nhật ABCD thành hình chữ nhật
Phép quay với biến hình chữ nhật thành hình chữ nhật
Vì nên . Từ đó suy ra phép vị tự với sẽ biến hình chữ nhật thành thành hình chữ nhật A’B’C’D’
Vậy phép đồng dạng có được bằng cách thực hiện liên tiếp các phép biến hình sẽ biến hình chữ nhật ABCD thành hình chữ nhật A’B’C’D’
2.3 Dạng 3: Dùng phép đồng dạng để giải toán
Phương pháp giải: Dùng các tính chất của phép đồng dạng
Ví dụ 5: Cho hai đường thẳng a và b cắt nhau và điểm C. Tìm trên a và b các điểm A và B tương ứng sao cho tam giác ABC vuông cân ở A.
Lời giải:
Ta thấy góc lượng giác và
Do đó có thể xem B là ảnh của A qua phép đồng dạng F có được bằng cách thực hiện liên tiếp phép quay tâm C, góc và phép vị tự tâm C, tỉ số
Vì nên , B lại thuộc a
Do đó B là giao của a” với b
Ví dụ 6: Cho tam giác ABC, dựng ra phía ngoài tam giác ABC các tam giác đều BCA’, CAB’, ABC’. Gọi lần lượt là tâm của ba tam giác đều BCA’, CAB’, ABC’. Chứng minh tam giác là tam giác đều
Lời giải:
Để chứng minh tam giác là tam giác đều ta xét các phép đồng dạng sau:
Kí hiệu là phép đồng dạng có được bằng cách thực hiện liên tiếp phép quay và phép vị tự . Ta xét các phép đồng dạng:
Gọi I, J, K, H là các điểm trên sao cho khi đó
Tương tự:
Vậy và
Mặt khác là phép đồng dạng có tỉ số và nên F chính là phép quay tâm góc quay 60
Do đó: nên tam giác là tam giác đều
III. Bài tập áp dụng
Bài 1: Chứng minh rằng hai đa giác đều có cùng số cạnh luôn đồng dạng với nhau
Bài 2: Cho hình thang ABCD có AB song song với CD, AD = a, DC = b còn hai đỉnh A, B cố định. Gọi I là giao điểm của hai đường chéo
a. Tìm tập hợp các điểm c khi D thay đổi
b. Tìm tập hợp các điểm I khi c và D thay đổi như trong câu a
Bài 3: Cho hình chữ nhật ABCD tâm I. Gọi E, F, G, H lần lượt là trung điểm của AB, CD, CI, FC. Phép đồng dạng hợp thành bởi phép vị tự tâm C tỉ số k = 2 và phép đối xứng tâm I biến tứ giác IGHF thành:
A. AIFD
B. BCFI
C. CIEB
D. DIEA
Bài 4: Trong mặt phẳng tọa độ Oxy, phép đồng dạng F hợp thành bởi phép vị tự tâm O (0; 0) tỉ số k = 3 và phép đối xứng trục Ox, biến đường thẳng d: x – y – 1 = 0 thành đường thẳng d’ có phương trình:
A. x - y + 3 = 0
B. x + y - 3 = 0
C. x + y + 3 = 0
D. x - y + 2 = 0
Bài 5: Cho điểm I (2; 1) điểm M (-1; 0) phép đồng dạng hợp thành bởi phép vị tự tâm I tỉ số k = -2 và phép đối xứng trục Ox biến M thành M’’ có tọa độ bao nhiêu?
Bài 6: Trong mặt phẳng tọa độ Oxy cho hai điểm A (-2; -3) và B (4; 1). Phép đồng dạng tỉ số biến điểm A thành A', biến điểm B thành B'. Tính độ dài A'B'
Bài 7: Trong các khẳng định sau, khẳng định nào sai?
A. Thực hiện liên tiếp hai phép đồng dạng thì được một phép đồng dạng
B. Phép dời hình là phép đồng dạng tỉ số k = 1
C. Phép vị tự có tính chất bảo toàn khoảng cách
D. Phép vị tự không là phép dời hình
Bài 8: Cho hình vuông ABCD tâm O. M, N, P, Q lần lượt là trung điểm các cạnh AB, BC, CD, DA. Phép dời hình nào sau đây biến tam giác AMO thành tam giác CPO?
A. Phép tịnh tiến vectơ
B. Phép đối xứng trục MP
C. Phép quay tâm A góc quay 180 độ
D. Phép quay tâm O góc quay -180 độ
Bài 9: Phép biến hình có được bằng cách thực hiện liên tiếp hai phép biến hình sau đây là một phép đồng dạng tỉ số k = 3
A. Phép tịnh tiến và phép đồng nhất
B. Phép tịnh tiến và phép quay
C. Phép dời hình và phép vị tự tỉ số
D. Phép tịnh tiến và phép vị tự tỉ số k = -3
Bài 10: Phép đồng dạng F biến điểm M (x; y) thành M’ (x’; y’) thỏa mãn:
Ảnh của điểm A (-2; 1) qua phép đồng dạng F là:
A. (6; 10)
B. (10; 6)
C. (6; -10)
D. (-6; 10)