100 công thức về quy tắc tính đạo hàm (2024 có đáp án) và cách giải các dạng toán
Công thức và cách giải các dạng toán về quy tắc tính đạo hàm gồm phương pháp giải, ví dụ minh họa có lời giải và bài tập tự luyện sẽ giúp học sinh biết cách làm bài tập các dạng toán về quy tắc tính đạo hàm. Mời các bạn đón xem
A. Lý thuyết về đạo hàm
1) Đạo hàm của một hàm số lượng giác
Đạo hàm các hàm số sơ cấp cơ bản |
Đạo hàm các hàm hợp u = u(x) |
(c)’ = 0 (c là hằng số) (x)’ = 1 |
|
|
|
2) Các quy tắc tính đạo hàm
Cho các hàm số u = u(x), v = v(x) có đạo hàm tại điểm x thuộc khoảng xác định. Ta có:
1. (u + v)’ = u’ + v’
2. (u – v)’ = u’ – v’
3. (u.v)’ = u’.v + v’.u
4.
Chú ý:
a) (k.v)’ = k.v’ (k: hằng số)
b)
Mở rộng:
3) Đạo hàm của hàm số hợp
Cho hàm số y = f(u(x)) = f(u) với u = u(x). Khi đó:
B. Phương pháp giải
- Sử dụng các quy tắc, công thức tính đạo hàm trong phần lý thuyết.
- Nhận biết và tính đạo hàm của hàm số hợp, hàm số có nhiều biểu thức.
C. Ví dụ minh họa
Ví dụ 1: Tính đạo hàm của các hàm số tại các điểm x0 sau:
a) y = 7 + x – x2, với x0 = 1
b) y = 3x2 – 4x + 9, với x0 = 1
Lời giải
a) y = 7 + x – x2
Ta có: y' = 1 – 2x
Vậy y'(1) = 1 – 2. 1 = –1.
b) y = 3x2 – 4x + 9
Ta có: y' = 6x – 4
Vậy y'(1) = 6.1 – 4 = 2.
Ví dụ 2: Tính các đạo hàm của các hàm số sau:
a) y = –x3 + 3x + 1
b) y = (2x – 3)(x5 – 2x)
c)
d)
e)
Lời giải
a) y’ = (–x3 + 3x + 1)’ = –3x2 + 3
b) y = (2x – 3)(x5 – 2x).
y’ = [(2x – 3)(x5 – 2x)]’
= (2x – 3)’.(x5 – 2x) + (x5 – 2x)’.(2x – 3)
= 2(x5 – 2x) + (5x4 – 2)(2x – 3)
= 12x5 – 15x4 – 8x + 6.
c)
.
d)
.
e)
Ví dụ 3: Tính đạo hàm của các hàm số sau:
a) y = (x7 + x)2
b) y = (1 – 2x2)3
c)
d) y = (1 + 2x)(2 + 3x2)(3 – 4x3)
e)
f)
Lời giải
a) y = (x7 + x)2. Sử dụng công thức (với u = x7 + x)
y' = 2(x7 + x).(x7 + x)’ = 2(x7 + x)(7x6 + 1).
b) y = (1 – 2x2)3. Sử dụng công thức với u = 1 – 2x2
y' = 3(1 – 2x2)2.(1 – 2x2)’ = 3(1 – 2x2)2(– 4x) = – 12x(1 – 2x2)2.
c)
Bước đầu tiên sử dụng , với
d) y = (1 + 2x)(2 + 3x2)(3 – 4x3)
y’ = (1 + 2x)’(2 + 3x2)(3 – 4x3) + (1 + 2x)(2 + 3x2)’(3 – 4x3) + (1 + 2x)(2 + 3x2)(3 – 4x3)’
y’ = 2(2 + 3x2)(3 – 4x3) + (1 + 2x)(6x)(3 – 4x3) + (1 + 2x)(2 + 3x2)(– 12x2)
y’ = 12 – 16x3 + 18x2 – 24x5 + 18x – 24x4 + 36x2 – 48x5 – 72x5 – 36x4 – 48x3 – 12x2
y’ = – 144x5 – 60x4 – 64x3 + 42x2 + 18x + 12.
e) . Sử dụng công thức với u = 1 + 2x – x2
.
f) . Sử dụng được:
.
D. Bài tập tự luyện
Câu 1. Cho hàm số f(x) xác định trên R bởi f(x) = 2x2 + 1. Giá trị f’(– 1) bằng:
A. 2
B. 6
C. – 4
D. 3
Câu 2. Cho hàm số f(x) = – 2x2 + 3x xác định trên R. Khi đó f'(x) bằng:
A. – 4x – 3
B. –4x + 3
C. 4x + 3
D. 4x – 3
Câu 3. Đạo hàm của hàm số y = (1 – x3)5 là:
A. y' = 5(1 – x3)4
B. y' = –15x2(1 – x3)4
C. y' = –3(1 – x3)4
D. y' = –5x2(1 – x3)4
Câu 4. Đạo hàm của hàm số y = (x2 – x + 1)5 là:
A. 4(x2 – x + 1)4(2x – 1)
B. 5(x2 – x + 1)4
C. 5(x2 – x + 1)4(2x – 1)
D. (x2 – x + 1)4(2x – 1)
Câu 5. Đạo hàm của hàm số bằng biểu thức nào dưới đây?
A.
B.
C.
D.
Câu 6. Hàm số có đạo hàm là:
A. y’ = 2
B.
C.
D.
Câu 7. Đạo hàm của hàm số bằng biểu thức có dạng . Khi đó a – b bằng:
A. a – b = 2
B. a – b = –1
C. a – b = 1
D. a – b = –2
Câu 8. Cho hàm số đạo hàm của hàm số tại x = 1 là:
A. y'(1) = –4
B. y'(1) = –5
C. y'(1) = –3
D. y'(1) = –2
Câu 9. Cho hàm số Tính y'(0) bằng:
A.
B.
C. y'(0) = 1
D. y'(0) = 2
Câu 10. Hàm số có đạo hàm là:
A. .
B. .
C. y’ = -2(x – 2)
D.
Câu 11. Cho hàm số f(x) xác định trên cho bởi có đạo hàm là:
A.
B.
C.
D.
Câu 12. Hàm số xác định trên . Đạo hàm của f(x)là:
A.
B.
C.
D.
Câu 13. Đạo hàm của hàm số bằng biểu thức có dạng Khi đó a + b bằng:
A. a + b = –10
B. a + b = 5
C. a + b = –10
D. a + b = –12
Câu 14. Đạo hàm của hàm số y = (x2 + 1)(5 – 3x2) bằng biểu thức có dạng ax3 + bx. Khi đó bằng:
A. – 1
B. –2
C. 3
D. – 3
Câu 15. Đạo hàm của hàm số y = x2(2x + 1)(5x – 3) bằng biểu thức có dạng ax3 + bx2 + cx. Khi đó a + b + c bằng:
A. 31
B. 24
C. 51
D. 34
Bảng đáp án
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
C |
B |
B |
C |
C |
C |
C |
B |
A |
A |
B |
D |
D |
D |
A |