100 công thức về chỉnh hợp chi tiết nhất (2024 có đáp án) và cách giải các dạng toán
Công thức và cách giải các dạng toán về chỉnh hợp gồm phương pháp giải, ví dụ minh họa có lời giải và bài tập tự luyện sẽ giúp học sinh biết cách làm bài tập các dạng toán về chỉnh hợp. Mời các bạn đón xem
Công thức chỉnh hợp
1. Tổng hợp lý thuyết
- Cho tập hợp A có n phần tử và cho số nguyên k, (). Khi lấy k phần tử của A và sắp xếp chúng theo một thứ tự, ta được một chỉnh hợp chập k của n phần tử của A (gọi tắt là một chỉnh hợp n chập k của A).
- Số các chỉnh hợp chập k của một tập hợp có n phần tử là: .
- Một số quy ước:
- Đặc điểm: Đây là sắp xếp có thứ tự và số phần tử được sắp xếp là k: .
2. Công thức tính
Công thức chỉnh hợp:
3. Ví dụ minh họa
Ví dụ 1: Một đôi bóng có 11 cầu thủ, chuẩn bị đá penalty. Huấn luận viên muốn chọn ra 5 cầu thủ lần lượt lên đá penalty. Biết cả 11 cầu thủ đều có khả năng đá như nhau. Hỏi có bao nhiêu cách chọn cầu thủ lên đá bóng.
Lời giải
Số cách chọn và sắp xếp 5 cầu thủ lần lượt lên đá penalty là cách.
Ví dụ 2: Từ các chữ số từ 0 đến 9. Có bao nhiêu cách lập một số tự nhiên sao cho:
a) Số có 6 chữ số khác nhau
b) Số có 6 chữ số khác nhau và chia hết cho 10
c) Số lẻ có 6 chữ số khác nhau
Lời giải
a) Lập số có 6 chữ số khác nhau
Chọn chữ số đầu tiên từ các số từ 1 đến 9: có 9 cách chọn
Các chữ số còn lại là chỉnh hợp chập 5 của 9 số còn lại (khác chữ số đầu tiên) có
Vậy có số.
b) Số có 6 chữ số khác nhau và chia hết cho 10
Chọn chữ số hàng đơn vị: có 1 cách chọn là chữ số 0
Chọn các chữ số còn lại là chỉnh hợp chập 5 của 9 số còn lại (khác chữ số 0) có
Vậy có số.
c) Gọi số là số lẻ có 6 chữ số khác nhau được lập từ chữ số 0 đến 9
Vì là số lẻ nên
Chọn f: có 5 cách chọn
Chọn a từ các chữ số {1; 2; 3; 4; 5; 6; 7; 8; 9}\{f}: có 8 cách chọn
Chọn b, c, d, e là chỉnh hợp chập 4 của 8 chữ số còn lại (khác f và a): có
Vậy có số.