Lý thuyết Bài toán có lời văn
– Chọn ẩn và tìm điều kiện của ẩn (thông thường ẩn là đại lượng bài toán yêu cầu tìm).
– Biểu thị các đại lượng chưa biết theo ẩn và các đại lượng đã biết.
– Lập bất phương trình biểu thị mối quan hệ giữa các đại lượng, biểu thị điều kiện đề bài đưa ra trong một tình huống nào đó…
Ví dụ 1. Bạn Hoa muốn pha hai loại nước chanh. Để pha một lít nước chanh loại I cần 30 g bột chanh, còn một lít nước chanh loại II cần 20 g bột chanh. Gọi x và y lần lượt là số lít nước chanh loại I và II pha chế được. Biết rằng Hoa chỉ có thể dùng không quá 100 g bột chanh. Hãy lập bất phương trình mô tả số lít nước chanh loại I và loại II mà bạn Hoa có thể pha chế được và biểu diễn miền nghiệm của các bất phương trình đó trên cùng một mặt phẳng tọa độ Oxy.
Hướng dẫn giải:
Ta có x và y lần lượt là số lít nước chanh loại I và II pha chế được nên x ≥ 0 (1) , y ≥ 0 (2).
Để pha x lít nước chanh loại I, Hoa cần số bột chanh là: 30x (g).
Để pha y lít nước chanh loại II, Hoa cần số bột chanh là: 20y (g).
Để pha cả x lít nước chanh loại I và y lít nước chanh loại II, Hoa cần số bột chanh là: 30x + 20y (g).
Biết rằng hoa chỉ có thể dùng không quá 100 g bột chanh nên ta có: 30x + 20y ≤ 100 (3)
Xét bất phương trình (1) và điểm A(1; 2) có:
Điểm A không nằm trên đường thẳng x = 0 và 1 ≥ 0, do đó, miền nghiệm của bất phương trình x ≥ 0 là nửa mặt phẳng có kể bờ x = 0 và chứa điểm A(1; 2).
Xét bất phương trình (2) và điểm B(0; 1) có:
Điểm B không nằm trên đường thẳng y = 0 và 1 ≥ 0, do đó, miền nghiệm của bất phương trình y ≥ 0 là nửa mặt phẳng có kể bờ y = 0 và chứa điểm B(0; 1).
Xét bất phương trình (3) và điểm C(1; 1) có:
Điểm C không nằm trên đường thẳng 30x + 20y = 100 và 30.1 + 20.1 = 50 ≤ 100, do đó, miền nghiệm của bất phương trình 30x + 20y ≤ 100 là nửa mặt phẳng có kể bờ 30x + 20y = 100 chứa điểm C(1; 1).
Ví dụ 2. Một công ty kinh doanh thương mại chuẩn bị cho một đợt khuyến mại nhằm thu hút khách hàng bằng cách tiến hành quảng cáo sản phẩm của công ty trên hệ thống phát thanh và truyền hình. Chi phí cho 1 phút quảng cáo trên sóng phát thanh là 800 000 đồng, trên sóng truyền hình là 4 000 000 đồng. Đài phát thanh chỉ nhận phát các chương trình quảng cáo dài ít nhất là 5 phút. Do nhu cầu quảng cáo trên truyền hình lớn nên đài truyền hình chỉ nhận phát các chương trình dài tối đa là 4 phút. Theo các phân tích, cùng thời lượng một phút quảng cáo, trên truyền hình sẽ có hiệu quả gấp 6 lần trên sóng phát thanh. Công ty dự định chi tối đa 16 000 000 đồng cho quảng cáo. Hãy lập bất phương trình mô tả chi phí đặt thời lượng quảng cáo trên sóng phát thanh và truyền hình của công ty đó và biểu diễn miền nghiệm của các bất phương trình đó trên cùng một mặt phẳng tọa độ Oxy.
Hướng dẫn giải:
Gọi thời lượng công ty đặt quảng cáo trên sóng phát thanh là x phút, trên truyền hình là y phút. Chi phí cho việc quảng cáo là: 800 000x + 4 000 000y (đồng)
Mức chi này không được phép vượt quá mức chi tối đa là 16 000 000 đồng nên ta có: 800 000x + 4 000 000y ≤ 16 000 000
⇔ x + 5y ≤ 20
⇔ x + 5y – 20 ≤ 0 (1)
Đài phát thanh chỉ nhận phát các chương trình quảng cáo dài ít nhất là 5 phút nên ta có: x ≥ 5 ⇔ x – 5 ≥ 0 (2)
Do nhu cầu quảng cáo trên truyền hình lớn nên đài truyền hình chỉ nhận phát các chương trình dài tối đa là 4 phút nên ta có: y ≤ 4 ⇔ y – 4 ≤ 0 (3)
Đồng thời do x, y là thời lượng quảng cáo nên: x ≥ 0 (4), y ≥ 0 (5)
Hiệu quả chung của quảng cáo là: x + 6y.
Xét bất phương trình (1) và điểm (0; 0). Ta có:
Điểm (0; 0) không nằm trên đường thẳng x + 5y – 20 = 0 và 0 + 5.0 – 20 ≤ 0 nên miền nghiệm của bất phương trình (1) là nửa mặt phẳng có kể bờ x + 5y – 20 = 0 và chứa điểm (0; 0).
Xét bất phương trình (2) và điểm (0; 0) ta có:
Điểm (0; 0) không nằm trên đường thẳng x – 5 = 0 và 0 – 5 = –5 < 0 nên miền nghiệm của bất phương trình (2) là nửa mặt phẳng có kể bờ x – 5 = 0 và không chứa điểm (0; 0).
Xét bất phương trình (3) và điểm (0; 0) ta có:
Điểm (0; 0) không nằm trên đường thẳng y – 4 = 0 và 0 – 4 = –4 ≤ 0 nên miền nghiệm của bất phương trình (3) là nửa mặt phẳng có kể bờ y – 4 = 0 và chứa điểm (0; 0).
Xét bất phương trình (4) và điểm A(1; 2) có:
Điểm A không nằm trên đường thẳng x = 0 và 1 ≥ 0, do đó, miền nghiệm của bất phương trình x ≥ 0 là nửa mặt phẳng có kể bờ x = 0 và chứa điểm A(1; 2).
Xét bất phương trình (5) và điểm B(0; 1) có:
Điểm B không nằm trên đường thẳng y = 0 và 1 ≥ 0, do đó, miền nghiệm của bất phương trình y ≥ 0 là nửa mặt phẳng có kể bờ y = 0 và chứa điểm B(0; 1).
Kết hợp miền nghiệm của các bất phương trình (1), (2), (3), (4), (5) ta được miền nghiệm thỏa mãn màu trắng trong hình vẽ.