Lý thuyết Giải bất phương trình bậc hai
Lý thuyết Giải bất phương trình bậc hai
a) Định nghĩa:
– Bất phương trình bậc hai ẩn x là bất phương trình có dạng:
ax2 + bx + c > 0, ax2 + bx + c ≥ 0, ax2 + bx + c < 0, ax2 + bx + c ≤ 0,
trong đó a, b, c là những số thực đã cho và a ≠ 0.
– Số thực x0 gọi là một nghiệm của bất phương trình bậc hai ax2 + bx + c > 0, nếu ax02 + bx0 + c > 0.
Tập hợp gồm tất cả các nghiệm của bất phương trình bậc hai ax2 + bx + c > 0 gọi là tập nghiệm của bất phương trình này.
– Giải bất phương trình bậc hai f(x) = ax2 + bx + c > 0 là tìm tập nghiệm của nó.
b) Phương pháp giải bất phương trình bậc hai:
Bước 1. Xét dấu tam thức f(x) = ax2 + bx + c.
Bước 2. Tìm các khoảng mà tam thức f(x) = ax2 + bx + c có dấu phù hợp với yêu cầu và kết luận.
Ví dụ 1. Giải các bất phương trình sau:
a) –3x2 + 2x + 1 < 0.
b) x2 + x – 12 ≤ 0.
Hướng dẫn giải:
a) Xét f(x) = –3x2 + 2x + 1
f(x) = –3x2 + 2x + 1 = 0 ⇔ x = 1 hoặc
Bảng xét dấu:
Từ bảng xét dấu, ta có tập nghiệm của bất phương trình f(x) < 0 là
b) Xét f(x) = x2 + x – 12
f(x) = x2 + x – 12 = 0 ⇔ x = 3 hoặc x = –4.
Bảng xét dấu:
Từ bảng xét dấu, ta có tập nghiệm của bất phương trình f(x) ≤ 0 là S = [–4; 3].
Ví dụ 2. Giải các bất phương trình sau:
a) (1 – 2x)(x2 – x – 1) > 0.
b)
c)
Hướng dẫn giải:
a) Ta có: (1 – 2x)(x2 – x – 1) = 0
Bảng xét dấu:
Dựa vào bảng xét dấu, ta có tập nghiệm của bất phương trình là
b)
Ta có:
x2 – 1 = 0 ⇔ x = ±1
x2 – 3 = 0 ⇔ x =
–3x2 + 2x + 8 = 0 ⇔ x = 2 hoặc
Bảng xét dấu:
Dựa vào bảng xét dấu, ta có tập nghiệm của bất phương trình đã cho là
c) Bất phương trình tương đương với
Ta có 9 – x2 = 0 ⇔ x = ±3
x2 – 8 = 0 ⇔ x =
Bảng xét dấu:
Dựa vào bảng xét dấu, ta có tập nghiệm của bất phương trình là